August 03, 2021 Volume 17 Issue 29

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


New 'superfuge' test combines multiple environments on a full-scale nuclear weapons system

A team of Sandia National Laboratories engineers developed a new testing capability in support of its nuclear weapons mission. The team completed their first combined-environments test on a full-scale weapons system at the Sandia Superfuge/Centrifuge complex in Albuquerque, NM.

In a successful test, weapons engineers simulated three environments -- acceleration, vibration, and spin -- simultaneously on an inert experimental test system built by Sandia and utilized in collaboration with Lawrence Livermore National Laboratory. In a laboratory setting, the test created the harsh environments that weapons systems experience from launch to reentry through the atmosphere.

An experimental test system is mounted on the centrifuge arm prior to combined environments testing at the Sandia National Laboratories Superfuge/Centrifuge Complex in Albuquerque, NM. [Photo by Byron Demosthenous]

 

 

 

 

Sandia is the design and engineering lab for most nonnuclear components in the U.S. nuclear weapons stockpile. The Nuclear Security Enterprise relies on Sandia for its sophisticated tests and computer models to qualify nonnuclear systems under its stockpile stewardship role. The labs' work to modify and upgrade the stockpile through life-extension and modernization programs ensures its safety, security, and reliability.

Simulating flight-like environments on full weapons system
Traditionally, engineers have simulated and tested each environment that weapons systems and components would experience -- vibration, shock, spin, and inertial load -- separately. Over the years, Sandia has advanced these tests, developing capabilities to test more than one environment simultaneously.

"For the past decade, we've been running superfuge tests at Sandia, combining multiple environments. But we've really only done these tests on individual components and subassemblies," explained Paulina Rabczak, an engineer from Sandia's California laboratory working on the project.

"We've now successfully designed and built an extensive, large test fixture to support testing a full weapons system and put it through flight-like environments at the superfuge," she said. "This is possibly the closest we can get to replicating an actual flight reentry event on the ground."

By reproducing a flight environment in a lab setting, engineers can achieve test repeatability, further improving the reliability of test data and maturing hardware, according to Rabczak. This is expected to lead to decreased qualification time and associated costs.

The Sandia National Laboratories Superfuge/Centrifuge Complex aims to provide the most realistic flight simulation environments possible. [Photo by Randy Montoya]

 

 

 

 

The newly developed test, completed under NNSA's Office of Engineering and Technology Maturation, produces richer data and better insights and is a crucial step in advancing the qualification testing of weapons systems, explained Rabczak. Qualification tests are used to validate weapons design and systems performance.

"Understanding the impact of combined environments to our weapons systems has proven very valuable as our engineers produce new designs," said Matt McDowell, an engineer at Sandia's superfuge complex.

Advancing data collection
Collecting data from a superfuge test is technically challenging due to the large amount of it and the presence of multiple spinning joints, McDowell said. Engineers use the data collected from environmental testing to inform and improve their designs.

To support the data collection requirements for the full-system combined-environments test, engineers developed an onboard data acquisition system, which collected data from more than 200 sensors on the test unit.

The data collection system, designed jointly by telemetry and systems engineers at Sandia, rode along with the test unit, digitized the analog data close to the test, and encoded the data using established protocols. Engineers were then able to pass hundreds of channels of digitized data down the centrifuge arm across a slip ring, a device that allows the transmission of electrical signals between stationary and rotating structures. The method would not have been possible using analog data.

"We aim to build on the successes we had in this initial test and expand this capability to further benefit our other nuclear-deterrence programs across the labs," McDowell said.

Source: Sandia

Published August 2021

Rate this article

[New 'superfuge' test combines multiple environments on a full-scale nuclear weapons system]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy